Upper bounds for residues of Dedekind zeta functions and class numbers of cubic and quartic number fields

نویسنده

  • Stéphane Louboutin
چکیده

Let K be an algebraic number field. Assume that ζK(s)/ζ(s) is entire. We give an explicit upper bound for the residue at s = 1 of the Dedekind zeta function ζK(s) of K. We deduce explicit upper bounds on class numbers of cubic and quartic number fields.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the use of explicit bounds on residues of Dedekind zeta functions taking into account the behavior of small primes

Lately, explicit upper bounds on |L(1, χ)| (for primitive Dirichlet characters χ) taking into account the behaviors of χ on a given finite set of primes have been obtained. This yields explicit upper bounds on residues of Dedekind zeta functions of abelian number fields taking into account the behavior of small primes, and it as been explained how such bounds yield improvements on lower bounds ...

متن کامل

EXPLICIT LOWER BOUNDS FOR RESIDUES AT s = 1 OF DEDEKIND ZETA FUNCTIONS AND RELATIVE CLASS NUMBERS OF CM-FIELDS

Let S be a given set of positive rational primes. Assume that the value of the Dedekind zeta function ζK of a number field K is less than or equal to zero at some real point β in the range 1 2 < β < 1. We give explicit lower bounds on the residue at s = 1 of this Dedekind zeta function which depend on β, the absolute value dK of the discriminant of K and the behavior in K of the rational primes...

متن کامل

EXPLICIT UPPER BOUNDS FOR THE RESIDUES AT s = 1 OF THE DEDEKIND ZETA FUNCTIONS OF SOME TOTALLY REAL NUMBER FIELDS

— We give an explicit upper bound for the residue at s = 1 of the Dedekind zeta function of a totally real number field K for which ζK(s)/ζ(s) is entire. Notice that this is conjecturally always the case, and that it holds true if K/Q is normal or if K is cubic. Résumé (Bornes supérieures explicites pour les résidus en s = 1 des fonctions zêta de Dedekind de corps de nombres totalement réels) N...

متن کامل

Computing Special Values of Partial Zeta Functions

We discuss computation of the special values of partial zeta functions associated to totally real number fields. The main tool is the Eisenstein cocycle Ψ , a group cocycle for GLn(Z); the special values are computed as periods of Ψ , and are expressed in terms of generalized Dedekind sums. We conclude with some numerical examples for cubic and quartic fields of small discriminant.

متن کامل

Zeros of Dedekind zeta functions in the critical strip

In this paper, we describe a computation which established the GRH to height 92 (resp. 40) for cubic number fields (resp. quartic number fields) with small discriminant. We use a method due to E. Friedman for computing values of Dedekind zeta functions, we take care of accumulated roundoff error to obtain results which are mathematically rigorous, and we generalize Turing’s criterion to prove t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 80  شماره 

صفحات  -

تاریخ انتشار 2011